
CS 40 | January 10, 2024

Basics of Web Apps



Agenda

1. Frontend
2. Backend
3. Reasons for Frontend/Backend Split
4. Transport Method
5. Databases (briefly)
6. Misc (mostly PaaS)



The Basic Architecture of a Web App

Frontend Backend

Third Party 
Services

Database

● REST
● GraphQL
● Web Socket
● etc



Frontend



Frontend

● The part the user interacts with
○ Run on the user's device

● Mobile App, Website, etc
○ Web apps: written in one of many frameworks that compiles to 

Javascript
○ Mobile Apps: written using platform specific libraries or are web 

apps

● Communicates with the backend over some protocol
○ Communicate "state" between backend and frontend









The Idea of State

● State: in general, all the information a website stores
○ User

■ All authentication information
○ Images/Video
○ Contacts
○ Everything else

● Frontend is responsible for displaying the state to the user in the app



Backend



Backend

● Contains all the application logic

○ Makes frontend smaller (and therefore faster, easier to load, and consume less bandwidth)

● Communicates with external resources (including the database)

● Runs on a server you own

● Presents some API to the frontend



Monolith vs Microservices

● Modern web applications are very complex with many services
○ Example: amazon.com has the product, a payment method, reviews, comments, 

recommendations, etc

● How can we structure a backend for reliability and scalability?

● In general:
○ Start building applications as monoliths composed of various services
○ If needed, for scaling/reliability reasons, break off services into separate microservices



Why do we need a backend?



Why can't we do this (or can we)?

Frontend

Third Party 
Services

Database

● REST
● GraphQL
● Websocket
● gRPC
● etc.



A: The frontend is untrusted



Do NOT serve any secrets to the 
frontend



Why backend?

● Security: hide API keys and other secrets

● Simplifies the frontend

● Flexibility: can push changes to the frontend and backend separately as long 
as the API is not changed



Transport Protocols



Transport Protocols

● RE(presentative) S(tate) T(ransfer)
● Web sockets
● GraphQL



REST

● Backend hosts various endpoints
○ Examples:

■ /api/user/register/
■ /api/user/login/
■ /api/user/me/

● Frontend makes queries to backend api endpoints

 

● REST is probably what you should use if you're building a web app



Web Sockets

● Maintain a continuous connection with the backend, all communication 
occurs over this connection

● Use for continuous data transfers



GraphQL

● Idea: Abstract over the backend, query data using a 
custom syntax

● Built by Meta in 2015 to deal with the demands of high 
scaling

● Works best only for very large and distributed web apps



Databases



Databases

● Types (massively oversimplified)
○ SQL
○ NoSQL
○ Vector
○ In-memory (Redis)



SQL Databases

● Idea: store everything in tables
● Multiple different SQL databases:

○ PostgreSQL
○ MySQL
○ MSSQL

● S(tructured) Q(uery) L(anguage)
○ Language that queries data stored in tables



NoSQL Databases

● Idea: Store data in something that isn't a table
○ Key-Value
○ Tree
○ Many others

● Examples:
○ DynamoDB
○ MongoDB
○ Countless others



Vector Databases

● Idea: store everything as high dimensional vectors
○ Useful for ML tasks
○ Allows you to query based on similarity or difference

● Examples:
○ ChromaDB
○ Pinecone
○ Countless others



In Memory Databases (Redis)

● Idea: Some things need to be very fast, so store it in RAM instead of on disk

● Example uses:
○ Rate limiting and DDoS prevention (slow access times → DDoS is more effective)
○ Accelerating user queries by mapping user IDs to database shards

● Noteworthy providers: Redis, memcached



Misc. Topics



Firebase

Frontend

Third Party 
Services

Database

● REST
● gRPC



Firebase

● PaaS: Platform as a Service
○ Essentially, ignore all the hosting details, only bring the code

● Frontend makes queries directly to database, database contains some backend 
logic
○ “Backend-as-a-service”

● Applications must be written for the Firebase API

● Incredibly easy to write insecure applications
○ https://mrbruh.com/chattr/
○ https://saligrama.io/blog/post/firebase-insecure-by-default/

https://mrbruh.com/chattr/
https://saligrama.io/blog/post/firebase-insecure-by-default/


Vercel

● Another PaaS service

● Serves a frontend allowing you to ignore hosting details

● Uses AWS below the hood
○ You can save money by using AWS directly

● In general, many parts of the stack can be delegated to a PaaS company



Authentication Providers

● Idea: many websites require a login, and logins are difficult, so have a 
trusted third party manage login info

● Providers:
○ Google
○ Apple
○ Microsoft
○ Auth0
○ Okta
○ etc.

● Used by https://provisiondns.infracourse.cloud

https://provisiondns.infracourse.cloud

