Basics of Web Apps

CS 40 | January 10, 2024

Agenda

Frontend

Backend

Reasons for Frontend/Backend Split
Transport Method

Databases (briefly)

Misc (mostly PaaS)

ok whE

The Basic Architecture of a Web App

|
REST
GraphQL
Web Socket
etc

[
y

Backend

Database }

Third Party
Services

|

Frontend

Frontend

e The part the user interacts with
o Runonthe user's device

e Mobile App, Website, etc

o Web apps: written in one of many frameworks that compiles to
Javascript
o Mobile Apps: written using platform specific libraries or are web

apps

e Communicates with the backend over some protocol
o Communicate "state" between backend and frontend

About Store Images sse

Google

Google Search I'm Feeling Lucky

Advertising Business How Search works N\ Our third decade of climate action: join us Privacy Terms Settings

CS 40 @ Stanford

Cloud Infrastructure and Scalable Application Deployment

Winter 2024

Mondays & Wednesdays, 4:30 PM - 5:50 PM
(enter from Duena St or Building 530 courtyard)

Trying to launch your next viral programming project and anticipating substantial user growth? This course will help you learn to implement
your ideas in the cloud in a scalable, cost-effective manner. Topics will include cloud AI/ML pipelines, virtual machines, containers, basic
networking, expressing infrastructure as code (IaC), data management, security and observability, and continuous integration and
deployment (CI/CD). Through hands-on learning and practical examples, you'll learn to effectively deploy and manage cloud infrastructure.
There is no out-of-pocket cost associated with this class and cloud credits will be provided for all students.

Course Staff

!

Cody Ho Ben Tripp Christos Kozyrakis
Instructor Teaching A Adviso culty Sponsor
yho@stanford.edu btripp@sta

&)

bé
e
&

»
e
&

PO O(

Signal

Tina Ukuku 11:11 AM
You set disappearing message time to 1...

Chairman Meow 1:11 AM
Missed call

Myles Larson 11:07 AM
/ Voice Message

CatChat ¢ &I 1102 AM

This is the instruction manual. '\ Attac...

Ali Smith 10:38 AM
a Attachment ©

Kirk Family 9:13 AM
Happy birthday to you. Happy birthda...

Jordan B. 9:09 AM
Sticker Message

Sunsets 11
View-once media

F¥ Rock Climbers

Which route should we take?

Nikki R.
Thanks! What a wonderful message tor...

Weather Forecasts MON
Raining all day s Attachi

The Idea of State

e State: in general, all the information a website stores
o User
m Allauthentication information
Images/Video
o Contacts
o Everything else

e Frontend is responsible for displaying the state to the user in the app

Backend

Backend

e Contains all the application logic

o Makes frontend smaller (and therefore faster, easier to load, and consume less bandwidth)

e Communicates with external resources (including the database)
e Runson aserver you own

e Presents some API to the frontend

Monolith vs Microservices

e Modern web applications are very complex with many services

o Example: amazon.com has the product, a payment method, reviews, comments,
recommendations, etc

e How can we structure a backend for reliability and scalability?

e Ingeneral:

o Start building applications as monoliths composed of various services
o If needed, for scaling/reliability reasons, break off services into separate microservices

Why do we need a backend?

Why can't we do this (or can we)?

/{ Database }
[Frontend }

Third Party
‘ Services

REST
GraphQL
Websocket
gRPC

etc.

A: The frontend is untrusted

Do NOT serve any secrets to the
frontend

Why backend?

e Security: hide API keys and other secrets

e Simplifies the frontend

e Flexibility: can push changes to the frontend and backend separately as long
as the API is not changed

Transport Protocols

Transport Protocols

e RE(presentative) S(tate) T(ransfer)
e Web sockets
e GraphQL

REST

e Backend hosts various endpoints

o Examples:
m /api/user/register/
m /api/user/login/
m /api/user/me/

e Frontend makes queries to backend api endpoints

e REST is probably what you should use if you're building a web app

Web Sockets

e Maintain a continuous connection with the backend, all communication
occurs over this connection

e Use for continuous data transfers

GraphQL

e Idea: Abstract over the backend, query data using a
custom syntax

e Built by Meta in 2015 to deal with the demands of high
scaling

e Works best only for very large and distributed web apps

query {
authors {
totalCount
edges {
cursor
node {
id
_id
firstName
lastName
quotes {
edges {
node {
id
_id
quote
}
}
}
}
}
pagelnfo {
startCursor
hasNextPage
hasPreviousPage
endCursor
}
}
}

Databases

Databases

e Types (massively oversimplified)

o SOL

o NoSOQL

o Vector

o In-memory (Redis)

SQL Databases

e Idea: store everything in tables

e Multiple different SQL databases:
o PostgreSQL
o MySOL
o MSSOL

e S(tructured) Q(uery) L(anguage)

o Language that queries data stored in tables

SELECT p.*
FROM Production.Product p
JOIN Sales.SalesOrderDetail sod ON p.ProductID = sod.ProductID;

NoSQL Databases

e Idea: Store data in something that isn't a table
o Key-Value
o Tree
o Many others

e Examples:
o DynamoDB
o MongoDB
o Countless others

Vector Databases

e Idea: store everything as high dimensional vectors
o Useful for ML tasks
o Allows you to query based on similarity or difference

e Examples:
o ChromaDB
o Pinecone
o Countless others

In Memory Databases (Redis)

e Idea: Some things need to be very fast, so store it in RAM instead of on disk

e Example uses:

o Rate limiting and DDoS prevention (slow access times = DDoS is more effective)
o Accelerating user queries by mapping user IDs to database shards

e Noteworthy providers: Redis, memcached

Misc. Topics

Firebase

e REST
e gRPC

Database }

Third Party
Services

Firebase

e PaaS: Platform as a Service
o Essentially, ignore all the hosting details, only bring the code

e Frontend makes queries directly to database, database contains some backend

logic
o “Backend-as-a-service”

e Applications must be written for the Firebase API

e Incredibly easy to write insecure applications
o https://mrbruh.com/chattr/
o https://saligrama.io/blog/post/firebase-insecure-by-default/

https://mrbruh.com/chattr/
https://saligrama.io/blog/post/firebase-insecure-by-default/

Vercel

e Another PaaS service

e Serves a frontend allowing you to ignore hosting details

e Uses AWS below the hood

o You can save money by using AWS directly

e In general, many parts of the stack can be delegated to a PaaS company

Authentication Providers

e Idea: many websites require a login, and logins are difficult, so have a
trusted third party manage login info

e Providers:

o Google
Apple
Microsoft
AuthO
Okta
etc.

O O O O O

e Used by https://provisiondns.infracourse.cloud

https://provisiondns.infracourse.cloud

